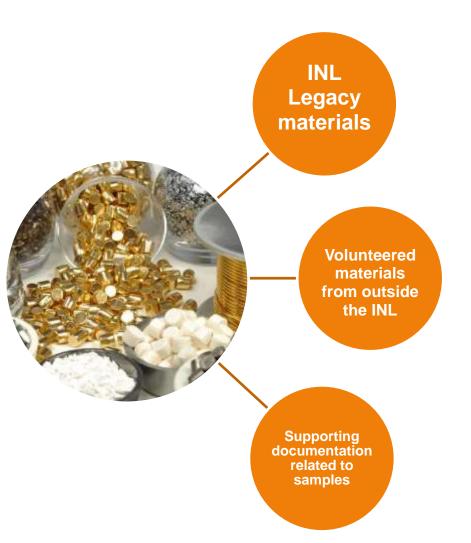


Nuclear Science User Facilities

Nuclear Fuels and Materials Library

Kelly Cunningham NFML Coordinator

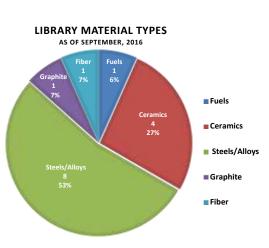
NSUF Annual Review DOE Headquarters November 2, 2016

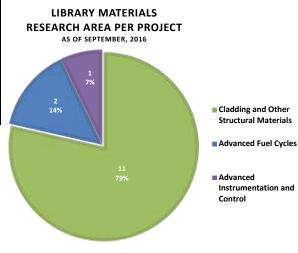

INL/MIS-16-40255

Nuclear Fuels and Materials Library

- Established in ~2009 with the Nuclear Science User Facilities
- The original library included ~3500 specimens
 - Legacy materials
 - Volunteered materials
 - NSUF Project specimens

NFML NOW and Beyond Call




Nuclear Energy

	Current Nuclear Fuels and Materials Library									
Project Material		Specimen Count	Organization	Availability	Library Utilization					
*08-75	Ceramics	120	University of Florida	Online and available						
*08-92	Steels/Alloys	665	University of Illinois	Online and available						
*08-96	Steels/Alloys	80	North Carolina State University	Online and available	multiple RTE proposal requests					
*08-139	Steels/Alloys	1572	University of California- Santa Barbara	Online and available						
08-331	Steels/Alloys, Ceramics	149	University of Wisconsin	Online and available	RTE & NEET-funded APS requests					
*09-157	Ceramics	160	Utah State University	Online and available						
*09-204	Ceramics	72	Drexel University	Online and available						
10-197	Fuels	78	Idaho State University	Online and available						
*65-SURV-81	Steels/Alloys	482	Idaho National Laboratory	Online and available						
70-CREEP-85	Steels/Alloys	49	Idaho National Laboratory	Online and available						
*Legacy	Steels/Alloys	150	Idaho National Laboratory	Available	F. Garner collaborative plan					
LANSCE	Steels/Alloys	2202	Los Alamos National National Laboratory	Online and available						
SAM-1	Graphite, Fiber	55	Idaho National Laboratory	Scheduled July 2017						

5834 TOTAL NFML SPECIMENS

* Original library

Nuclear Energy

ENERGY

	Future Project Specimens & Scheduled/Potential Material Donations									
Project	Material	Organization		Availability						
10-242 -1, -2, -3	Fuels	University of Central Florida	Low Fluence Behavior of Metallic Fuels	UCF-1 available Feb 2017 UCF-2 and -3 TBD						
10-269	Fuels	Boise State University	High Temperature In-pile Irradiation Test of Single Phase U3Si2	projected completion 02/2022 available 02/ 2025						
15-8242	F/M Steels, Austenitic Steels/Alloys	Boise State University	Irradiation Influence on Alloys Fabricated by Powder Metallurgy and Hot Isostatic Pressing for Nuclear Applications	projected completion 2022 available 2025						
15-8242 add-on's	Metal Alloys/Hf3Al-Al		Add'l material added into emply slots with 8242 irradiation	ТВD						
16-10537	F/M Steels, Austenitic Steels/Alloys, RPV Steels	Idaho State University	Enhancing irradiation tolerance of steels via nanostructuring by innovative manufacturing techniques	TBD						
16-10584	Austenitic Steels/Alloys	Colorado School of Mines	Irradiation performance testing of specimens produced by commercially available additive manufacturing techniques	TBD						
16-10393	Austenitic Steels/Alloys	GE Hitachi	Irradiation Testing of LWR Additively Manufactured Materials	TBD						
Naval Reactors	Unirradiated and irradiated SiC and conventional & non-ferritic steels	Bechtel Marine Propulsion Corportion	Samples are currently stored at WestOne in Idaho Falls, ATR Canal, and ORNL.	Unirradiated samples received, irradiated in process						
Zorita	Austenitic Steels/Alloys	Studsvik	394SS under PWR conditions for 26.5 EFPY	Title Transfer complete deliver to INL TBD						
Zion NPP	Low alloy steel	Oak Ridge National Laboratory	RPV & core internals exposed to high doses neutron radiation	Ongoing discussions with ORNL staff						
ORNL-IMET		Oak Ridge National Laboratory		Ongoing discussions with ORNL staff						
INL	Fuels	INL Fuels & Materials Division	HFIR low dose irradiation materials	Will be shipped to INL when HFEF shutdown ends						

Nuclear Science User Facilities

Database Design

Preparation

Nuclear Energy

Resource Collection

- Consolidated all files and versions (electronic, hard copy, hand written) into one workbook
- Compared spreadsheets to hardcopy printout of INL facility inventories for storage ID #s and locations
- Searched INL EDMS, (electronic document management system) for reports, drawings, asruns analysis, raw data in order to populate project spreadsheets.
- Reached out to contacts for additional information or documentation

IM interface

- Made all project data within spreadsheets consistent (units of measure, scientific notation, consistent ID numbers, etc.
- Worked with IM staff (Learn and improve as-you-go process)
- Reviewed all project information to confirm successful import

Database design

• The NFML contains project information such as abstract, PI, reactor, planned irradiation conditions linked to individual specimens linked to each cycle with as-run irradiation conditions.

Nuclear Energy

Database Design Challenges

Lessons Learned/Challenges

- We need a process/task for library coordination early in the project design process
- Need to create standard (mandatory) categories to use when adding sample information to library

Packet Material Code	Material Name	rial Name ▼ Material Description ▼ KGT # ▼ Type Co ▼ Sort A to Z
A to Z		Sort Z to A
Z ↓ Sort Z to A		Sort by Color +
Sor <u>t</u> by Color	▶	™ ⊆lear Filter From "Material Description"
Clear Filter From "N	laterial Name"	Filter by Color Text Filters
Filter by Color	▶	Search
Text <u>F</u> ilters	•	e (Select All)
Search	Q	28.4% 100% AL3Hr
 ✓ (Select All) ✓ 0.7MgO-0.3N ✓ 12Cr Model A ✓ 14Cr/WT-Ar ✓ 14Cr/WT-H ✓ 14Cr/WT-UCSI ✓ 14Cr/WT-UCSI ✓ 14Cr/WT-UCSI ✓ 14Cr/WT-UCSI ✓ 15Cr2WYT ✓ 15Cr2WYT ✓ 15Cr2WYT ✓ 304 SST EBR II ✓ 304 SST EBR II ✓ 304 SST-Weld ✓ 316 stainless ✓ 316L stainless ✓ 347 SST ✓ 416 SST ✓ 420 SST 	Illoy NL 1 IB B B C IB C I I I I I I I I I I I I I	20% AL3Hf composite 20% AL3Hf composite 22.8.4% AL3Hf composite 23.4% AL3Hf composite 24.4% Alaminum Alloy Aluminum Alloy Aluminum Alloy-O Aluminum Alloy-O Aluminum Alloy-O Aluminum Alloy-O Austenitic Stainless Steel Austenitic Stainless Steel Austenitic Steels Austenitic Steels Austenitic Steels Carbon Steet Carbon Steet Carbon Steet Carbon Steet Carbon Steet Ceramics Commercial Alloy (ODS) Diffusion Multiple Perritic-Martensitic Steels Peritic-Martensitic Steels Perritic-Martensitic Steels Peri

Database Design

Challenges

Nuclear Energy

Lessons Learned/Challenges (continued)

- How do we confirm specimen locations and track shipments/transfers?
- How do we keep track of what specimens are being/have been used or have been totally depleted
 - Gap analysis for library inventory?
- How do we display (or hide) fuel specimens in the library
 - Determine access levels

Storage

- Need physical space for new samples
- Storing and retrieving samples from HFEF is time consuming, expensive, and introduces contamination to otherwise clean specimens

Donations to the Library

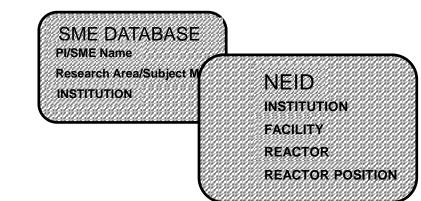
- We need a transfer of ownership procedure/process for donated material
- Do we decline volunteered samples that don't have adequate provenance?

Export Control

• Documentation attached to projects needs to be export controlled

Database Design Where We Were

spe vari	cime ious	ens l	is ipo	id ~38 ted in ositio)		MgO M	terial ID ×1.5Al2O3 gAl2O4 MgO (1202O7		9 20 20		4 4 4 4 4 4 80 4	Cd 44 44 44 44	२ 1 1 व		Ph 43 43 43 44 44 44 44 44 44 44 44 44 44	0 0 0 0	Na 12 12 5 5	51 14 14 400 400	Fn 8 *100	Mn d	#	Ga -04 -04	NI 4	n 2 1 4	경 각 각 50 50	2n <1 <1 2	2r 11
					Mat	erial II		g_SnO4	1. A	9	-1	40	<20	<10	_	170	a	2		220	10			. <10		60	<10	
			_		S	upplie		terial ID	1	ть	Dy	AI	На	L Ir		. 1	Tm	5	L Y	УЬ	×	La	Lu	He	9	Se	Me	\$m.
				Material ID	'Pure'	Copper		22201		6	=10	20	4	1	_	4	-14	10	10	-11	5	60	4	-40.1	30	<0.1	2	20
				& Supplier	а	nd reg)	0.7MgO	-0.3Nd ₂ Zr ₂	0,	6	<10	20	b.	<1		4	-4	10	10	-4	5	60	-4	-0.1	30	-0.1	8 8	-20
	_		EX D	e e-9Cr	'Pu	re' Nick	Ma	terial ID	-	Bi	~	Eu	Th	10	-	6d	U	H	Sb	In	Co	AE	Aa	Pr	1			_
	ſ			e-9Cr-0.1C	Goodf	ellow (1,2r20,	_	0.2	d	15	<0.4		_	<10	<0.4	<75	1	1				100				
		Code	l land	e-9Cr-0.5C		nd reg)	the second se	g;SnO4	_	30					_				260	<20	30	-20	<200					
	Asterial ID	10 X 1	and the second	e-12Cr	'Nano' (Carbon	0.7MgO	0.3Nd_271		8.7	4	<5	<0.4	4		<10	<0.4	<17	1		1	3 3		100		_	_	
H	17-9 17-9	TA TB	1.1	e-12Cr-0.2C e-12Cr-0.5C	MA956,	ODS		7.7).15 nax			bal	0.1	max	0.5	max	-	4	75	0.02 max	0.4	2	20	0.3 max	0.3 n	nax	
	iT-9	NF HA	1.0	e-14Cr	MA754	ODS		8.8			7	8	1	0.	.05				(.3		0.5	2	20				
TTTE STTTET	91	HB	E	e-19Cr	+ Comp	osition	in weig	ht perce	ent																			
inconer	ICM12A	ER	ET	91	7.55		0.14				0	28 0	0.02 0	0.01		0.2	1 9.2	4 0.4	17 B	al 0.16	6		0.96					
Inconel	F615	MA	N H	IT9	7.73		0.2			+	0	38	-	-		0.3	115	5 0.	6	0.6			1	0.52				
316L 0.7	CF ODS	MB PM	PM	1A9 57	7.72		0.014		0.019	0.	1 0.	006 <	0.005		1.05	0.04	18 13.8	17 0.0	6 83.	042 0.13	i.		0.3		0.083C			
2021 2.2	OOH-TMF	¥Β		111W1-0C3D	Sector Sector Sector Sector		1.0	14.04		0.50		4.:-	Ma		ι	-	L.		1.		1	1	. 6	-	1			
	Kr Model	YC CS	14C	YWT-UCSB	C (1150°C	1	7.8	14.0	_	0.50 t		t 2.01	0.2	25	t		t 0.010		t 5.14	t 0.45	0	t. 300	t 12.60	-	t.			
304L 2, 4 1	2Cr Model			2WYT		-	7.9	9.01		0.23	_	1	0.	16	0.0		0.140		0.09	0.45		.005	0.03	-	t			
11100 20	IT-UPS-AX-	EBR-II	-	7.89	100012	-	-		1.00	0.100	-	-		and an other	-		1000		.27 0.		1.55							
WIEDOT C	/9 (F709	ORNL		7.89	0.004	0.078	11.102		0.02	0.47	0.01	5 0.00	01 -	0.02					6.0	0.34	1.50	- 1	0.03					
Al6061 (iuper 304H I	DRNL		7.89	0.002	0.08	0.107	0.012	0.01		0.01			1 0.06						00 0:50		0.02 0	01.0.11					
C276 0.25	mm	£730		- <0.	002	5.46	-	Б.	22	.0	.39	15.0	82	Bal	0.0	07	<0.002	4	0.02									
AI5052 0.7	75 mm	1409		Bal,	- 0.1	5-0.35	0	1 0	4	0	1.1	1		+		-	-		0.2	-	ei -							



Database Design Where We Are

Nuclear Energy

PF	ROJECT DAT	ABASE
	ME	
Project ID	Start Date	Project Type
Proposal	End Date	Material Type
CINR #	PI Name	Research Area
RTE #	Tech Lead	INSTITUTION
NSUF Call	Facility Tech Lead	FACILITY
Award Date	Collaborators	Related Documentation

SAMPLE LIBRARY

→PROJECT NAME REACTOR

REACTOR POSITION

Sample ID Code

Capsule

Packet

Material Code

Material Name

Material Description

KGT

Specimen Type Dimensions

Samples Remaining **Specimen Availability**

Availability Date

Certification

Certification Code

of Samples

Storage FACILITY

Notes

PLANNED

Temperature

Dose (DPA)

Fluence [x10²⁰]

Flux [x10¹⁴]

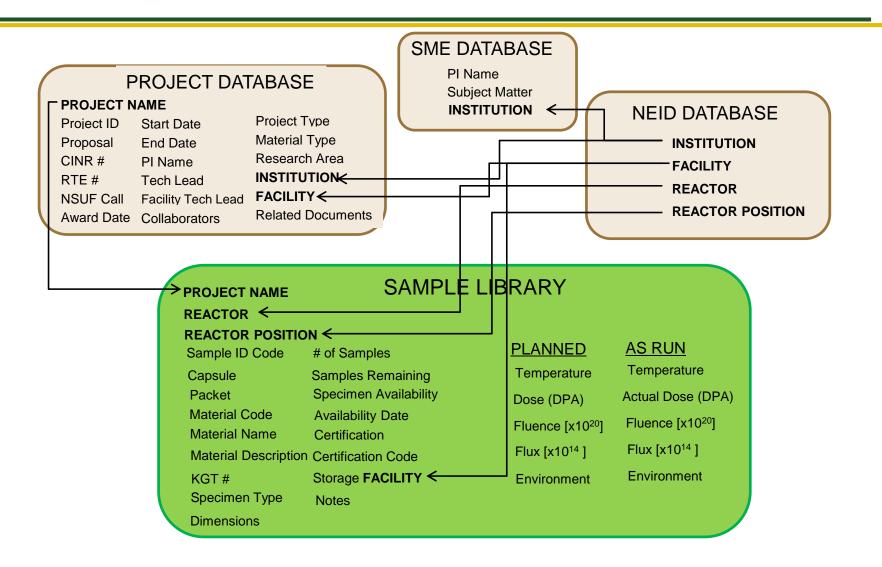
Environment

AS RUN

Temperature

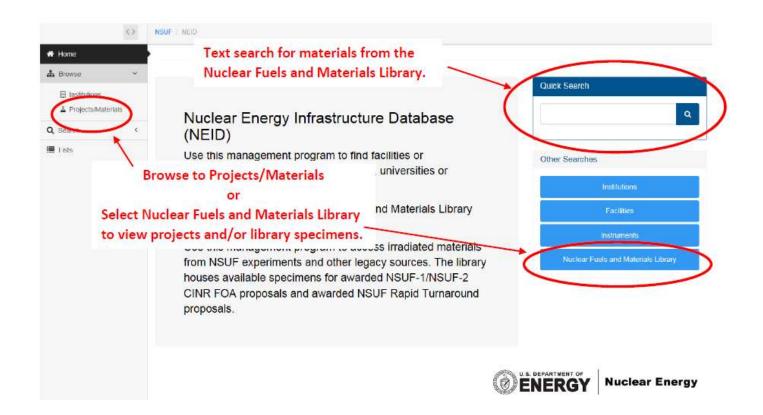
Actual Dose (DPA)

Fluence [x10²⁰]


Flux [x10¹⁴]

Environment

Database Design Where We're Going



Current Version of NFML

Nuclear Energy

• Access is granted at the NSUF homepage log-on

Current Version of NFML

Nuclear Energy

Users have access to projects, corresponding specimens, and supporting documentation from one screen.

10.		Text search for ke words in project titles.		earch ×
Proposal ID 🔶	Proposal	Organization	PI	🕴 Materials Librar
8-139	Characterization of the Microstructures and Mechanical Properties of Advanced Structural Alloys for Radiation Service. A Comprehensive Library of ATR Irradiated Alloys and Specimen	University of California- Santa Barbara	Takuya Yamamoto	* Scenera
8-331	Irradiation Test Plan for the Advanced Test Reactor National Scientific User Facility/University of Wisconsin Pilot Project	University of Wisconsin	Kumar Sridharan	* Specimens
1.75	Nonstoichiometric Spinel as Inert Matrix	University of Florida	Juan Nino	Specify is
8-92	Irradiation Performance of Fe-Cr Base Alloys	University of Illinois	James Stubbins	 Specifiers
6.96	Influence of Fast Neutron Irradiation on the Mechanical Properties and Microstructure of Nanostructured Metals/Alloys	North Carolina State University	Walid Mohamed	*Sectores
8-90	Advanced Non-Destructive Assessment Technology to Determine the Aging of Structural Materials for Generation IV Nuclear Reactor	Colorado School of Mines	Travis Koenig	
9.152	Radiation Stability of Ceramics for Advanced Fuel Applications	University of Florida	Yong Yang	
9-153	Nigh Fluence Embrittlement Database and ATR Irradiation Facility for LWR	University of California- Santa Barbara	G.Robert Odette	/

Select a project to view information and specimens.

Click to see all projects that contain library specimens.

Current Version of NFML

Hide Empty

Nuclear Energy

Further drill down accesses in-depth information about the project and individual specimens.

Project Type Fiscal Year	Imadiation/PIE 2008								
Project Code	68-331	15 🛩					Sec	mit	5
Proposal	Imadiation Text Plan for the Advanced Test Reactor National Scientific User Facility/University of Wisconsin Pilot Project	iD	•	KGT (Description	1	Material - 1	Facility	Specim
Abstract	The Idaho National Laboratory.	901-08-331		201	Ferritic Martonsitic Steels		MT-9 EBR-8	HFEF	Tensila
	through the Department of Energy Idaho Operations Office, has been	002-08-331		261	Ferritic-Martenatic Steels		HT-9 LANL	HFEF	Tensila
	assigned the responsibility of imatilating experiments for the	003-05-331		261	Fentic-Matensitic Steels		HT-9 ORNL	HFEF	Tensile
	Advanced Test Reactor (ATR) National Scientific User Facility	(04-09-221		402	Fertilic-Martenaltic Steels		NFE16	HFEF	Tenala
	(NSUF),	005-08-331		403	Ceramica		SIC	HFEF	Tensile
Organization NSUF Call P1 Name	University of Wisconsin FY/DE Call for User Proposals Kumar Snitharan	006-08-331			Ferritic-Martenatic Steela		9Cr Model Alloy	HFEF	TEM
Pi Email Pi Phone	kumar@engr.wisc.edu 205-526-5209	007-06-331			Ferritz-Martenaliz Steels		12Cr Model Alloy	HFEF	TEM
Tech Lead Collaborators	Roty Kennedy Todd Allen	001-05-331)		Ferritic-Martenatic Steels		HT-9 ORNL	HFEF	TEM
Irradiation Facility	ATR	1009-00-331		2	Ferritic-Martenatic Steels		HT-9 EBR-4	HFEF	Tensile
PIE Facility 1 PIE Facility 2	MFC, CAES MACS, UNLY, ORNL NIST, LANL, University of	010-08-331		202	Ferrito-Martensitic Steels		HT-9 LANL	HFEF	Tensile
250/352079	Wisconsin	011-09-111		2017	Functic-Martonolite Stoels		HT-9 ORNL	HFEF	Tensile
Material Type	Ferritic-Martansitic staals, Austenitic steels, Ceramics, Refractory Aloys and Silver.	012-08-331		287.	Ferritic-Nationaliz Steela		NF616	HFEF	Tensile
	Amorphous Metals	013-06-331		287	Ceramics		sic	HFEF	Tensile
Research Area	Cladding and Other Sinuctural Materials	014-05-331			Austenitic Steels		HT-UPS- AX-6	EMC-ANL-	Tensile
Locarnetit Name	06-331 Material Compositions and	015-08-331			Austentic Steels		NF709	HFEF	Tensile

Select a specimen to view cycle and irradiation information.

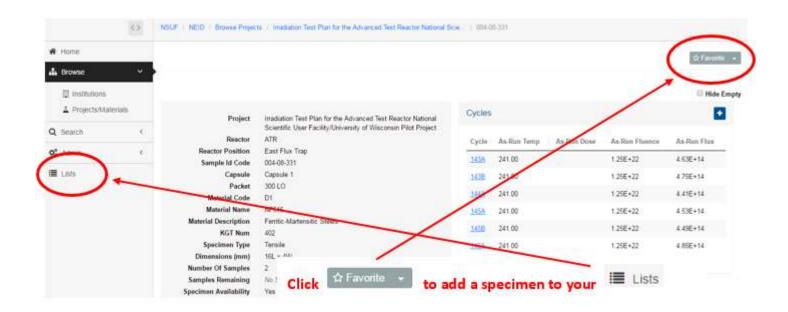
NFML Database Current Version of NFML

William Emerty

Nuclear Energy

Planned and As-Run conditions are listed per specimen, per cycle.

Project	Irradiation Test Plan for the Advanced Test Reactor National Scientific User Facility/University of Wisconsin Pilot Project	Cycles						
Reactor	ATR	Cycle As-Run Temp	As-Run Dose As-Run Fluence	As-Run Flux				
Reactor Position	East Flux Trap							
Sample Id Code	008-08-331	143A 328.50	. 1.24E122.	4.68E+14				
Capsule	Capsule 1	1435 328.50	1.24E+22	4.42E+14				
Packet	300 LO	1446 328.50	1.24E+22	4.53E+14				
Material Code	H1	1990 320 D	1.646722	4.035714				
Material Name	HT-9 ORNL	145A 328.50	1.24E+22	4.44E+14				
Material Description	Ferritic-Martensitic Street-	1458 328.50	1.34E+22	4.8E+14				
Specimen Type	Specimen	Contraction of the second	The second second					
Dimensions (mm)	3d x 2	146A 328.50	1.24E+22	4.64E+14				
Number Of Samples	Availability	$\mathbf{\vee}$						
Specimen Availability	Yes							
Availability Date	November 26, 2014		•					
Certification	Yes	As-run	irradiation conditi	ons per				
Storage Facility	Hot Fuel Examination Facility							
Planned Temp *C	300.00	cycle						
Planned Dose (DPA)	3							
flanned Flux (n/cm2s)	9.7E+13							
Planned Environment	Helium/Argon							
	0							
Run Total Dose (DPA) As Run Total Fluence	Dianned and	as-run total irradi						



Nuclear Energy

NEID lists provide a way create a wish list of specimens for proposals.

NFML Database Future Vision of NFML

- Text searches will be more efficient and faster
- Common queries can be run for reports
- Dropdown searches with standardized material names and types
- Attributes can be added to searches
- All databases within NEID will be linked (pages can be accessed from any database)
- Work with the NEID Database Review Panel to learn their vision
- Project documents and provenance information will be linked to library

Additional Usability Improvements

Nuclear Energy

In order to better support the users of the NSUF access programs:

- Request for Information (RFI) in FY 17 for additional materials (Level 3 milestone due 3/31/2017)
- Survey the NSUF Users Organization for input
- Possible characterization and location confirmation for NSUF samples within HFEF
- FY 2017 report on the status of the NFML:
 - Results of the RFI
 - NFML policy and user agreements
 - Future development plans
 - Level 3 milestone due 9/29/2017

Licensing Quality Data

- Possible collaboration w/ Gen IV Handbook William Corwin
- Nuclear Data Management and Analysis System (NDMAS) <u>https://ndmas.inl.gov</u>

Contact Information

Nuclear Energy

Kelly Cunningham (208) 526-2369 Kelly.Cunningham@INL.gov

"Sorry, bub. You're not in the database."

@ 1997 Mick Stevens from The Cartoon Bank. All rights reserved.

DISCLAIMER

- This information was prepared as an account of work sponsored by an agency of the U.S. Government.
- Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.
- References herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof.
- The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

